distinct - distinct: a method for differential analyses via hierarchical permutation tests

distinct is a statistical method to perform differential testing between two or more groups of distributions; differential testing is performed via hierarchical non-parametric permutation tests on the cumulative distribution functions (cdfs) of each sample. While most methods for differential expression target differences in the mean abundance between conditions, distinct, by comparing full cdfs, identifies, both, differential patterns involving changes in the mean, as well as more subtle variations that do not involve the mean (e.g., unimodal vs. bi-modal distributions with the same mean). distinct is a general and flexible tool: due to its fully non-parametric nature, which makes no assumptions on how the data was generated, it can be applied to a variety of datasets. It is particularly suitable to perform differential state analyses on single cell data (i.e., differential analyses within sub-populations of cells), such as single cell RNA sequencing (scRNA-seq) and high-dimensional flow or mass cytometry (HDCyto) data. To use distinct one needs data from two or more groups of samples (i.e., experimental conditions), with at least 2 samples (i.e., biological replicates) per group.

Last updated 24 days ago

geneticsrnaseqsequencingdifferentialexpressiongeneexpressionmultiplecomparisonsoftwaretranscriptionstatisticalmethodvisualizationsinglecellflowcytometrygenetarget

6.90 score 11 stars 1 packages 34 scripts 508 downloads

IsoBayes - IsoBayes: Single Isoform protein inference Method via Bayesian Analyses

IsoBayes is a Bayesian method to perform inference on single protein isoforms. Our approach infers the presence/absence of protein isoforms, and also estimates their abundance; additionally, it provides a measure of the uncertainty of these estimates, via: i) the posterior probability that a protein isoform is present in the sample; ii) a posterior credible interval of its abundance. IsoBayes inputs liquid cromatography mass spectrometry (MS) data, and can work with both PSM counts, and intensities. When available, trascript isoform abundances (i.e., TPMs) are also incorporated: TPMs are used to formulate an informative prior for the respective protein isoform relative abundance. We further identify isoforms where the relative abundance of proteins and transcripts significantly differ. We use a two-layer latent variable approach to model two sources of uncertainty typical of MS data: i) peptides may be erroneously detected (even when absent); ii) many peptides are compatible with multiple protein isoforms. In the first layer, we sample the presence/absence of each peptide based on its estimated probability of being mistakenly detected, also known as PEP (i.e., posterior error probability). In the second layer, for peptides that were estimated as being present, we allocate their abundance across the protein isoforms they map to. These two steps allow us to recover the presence and abundance of each protein isoform.

Last updated 24 days ago

statisticalmethodbayesianproteomicsmassspectrometryalternativesplicingsequencingrnaseqgeneexpressiongeneticsvisualizationsoftware

5.50 score 7 stars 10 scripts 170 downloads